Converting Telescope Coordinate Systems.
Halverson 12/6/2018

How to convert from the Alt-Az (Altitude-Azimuth) coordinates our telescope uses to Equatorial coordinates
needed to locate and track objects in the sky.

General Strategy
I am calling the scope’s Alt-Az system the “A” system. and the Equatorial coordinates the “E” system.
General strategy to convert from A to E: (scope coordinates to sky coordinates)

1. Convert the pointing angles of the scope to x,y,z coordinates of a point a distance away, in the direction the
scope is pointing. The distance R doesn’t actually matter. It could be 10 meters away, or 1000 light years
away.

In short, (6,0,R)4 — (x,),2)4

2. Convert the (x,y,z)4 coordinates to (x,),z)r coordinates, in the rotated coordinate system where the z axis
points to the north celestial pole. (The z axis points to Polaris, the “North Star”.)

In short, (x,y,2)4 — (x,y,z)E
3. Convert the equatorial x,y,z coordinates to equatorial angles.
In short, (x,y,z)E — (6,0,R)E

Again, R is just a placeholder kept to make the math easier to understand. In the computer code we will
probably set R to 1, or eliminate it completely.

We will also need to convert E coordinates to A. With a few minor differences, the same process will apply.

HELP!!!
I NEED A STUDENT TO WORK THE MATH FOR E TO A COORDINATES CONVERSION.

Update 1/22/2019: 1 have done the math for E to A conversion and written the Python code for the
conversions math to be built in to the telescope control software. I have added the math and the Python
code to this document. I also corrected a couple mistakes. Scroll down and take a look.

Coordinate systems
“A” = ALT-AZ COORDINATE SYSTEM:

(842%°)
(0,68 .- N
Ea;‘\' (¢AC Qo/ QA:O)

Novth AR 4{
7 /
(4,200 4o\ T
95 =0°) = X
A
\/ i’ Te(escofe / \\> S-OV {-L\
\\‘\) ((ﬁ = lgo 'O>
K West (QDA’ 270" = -), =0)
“E” = EQUATORIAL COORDINATE SYSTEM
North Cefestial Pole (Celestial, Epontur

% / above uS)

e \z (P =186, :OO.)

(cue;ﬁa{ gzua,m vmoler vs)

/¢ 8,20

Converting from A to E - details
Step 1: (0’¢’R)A - (x,y,z)A

x, = Rcos(8,)cos(¢,)
Y4 = Rcos(0,)sin(g,)
z, = Rsin(8,)

Step 2: (x,),5)4 — (X,),2)E

This part is complicated and I will break it into smaller sub-steps.

Sub-step 2.1: y4 — vE

This is easy! The y coordinates are the same in the two systems.

Ve = Ya

Sub-step 2.2: (x,z)4 — (ear)

We now look at the coordinate systems a bit differently. We pretend we are West of the telescope and look at it
sitting in the East:

s %
UKty 4

k
AN\

A\l

}

“a
% &=
This 1s a good way to look at it because from this vantage point the transition from “A” (Alt-Az) to

“E” (Equatorial) coordinates looks like a simple rotation.

In the diagram, we have defined a new angle called e4 related to the altitude 64 but different depending
on the current azimuth angle ¢4 of the telescope. To calculate e, first notice that

z,=rsin(e,) and x, =rcos(e,).

Now put these two thing together like this:
2z, _ rsin(e,)

=——"==tan(e,)
x, rcos(e,)

z
e, = arctan| —+
‘xA

We also define a new radial distance r related to the original R, but foreshortened because of our point-of-view
standing West of the telescope, looking East. We find it using the pythagorean theorem:

r=4\xi+2z;

We now have an easy way to find e4:

(Another way to find r is r = Rcos(¢,) however if ¢4. is greater than 90 degrees, the cosine will be negative,

so we actually would need to use the absolute value r = R|cos(q) N)‘)

Sub-step 2.3: es — e

The E system is rotated relative to the A system by an amount that depends on our latitude L. Here, in Los
Angeles, L=34.05 degrees which means we are that many degrees North of the equator, and that Polaris, the
North Star, is that many degrees above the horizon, to the North.

The E system’s x and z axes are rotated L degrees counter-clockwise from the A system’s x and z axis. In the
diagram below, you see how it is similar to the previous digram, but rotated ccw. (The y axis is pointed away
from us, so we don’t se it.)

;xf ‘;Polcw} s, Novtl, Cﬂ.(eﬁ‘f"/a(?afe_

L.

(I corrected a mistake in this diagram and in the following step. The angles didn’t add up right.)
For the conversion e4 — eg first note that the angle from the x axis to the z axis is 90 degrees so
90°=e,—e,+L
Solve for eg:
e, =90"+e,— L

No conversion is needed for 7, since the distance from the origin is unaffected by a rotation.

Sub-step 2.4: (r.ex)— (x,2)E

We now want to get x and z in the E system. (We already know y; it didn’t change.) It isn’t too hard:
X, =rcos(e;)

zp =rsin(e;)

(I corrected a mistake here. I had the cos and sin reversed.)

We are now done with step 2. We know (Xx,y,Z)E.

Step 3: (x,,5)E — (6,9,R)E
Since R doesn’t change in a rotation, we already know this part of the answer. It is the same R we started with.
(And it doesn’t really matter what R is.)

We also know this:
X = Rcos(0,)cos(¢,)
Y = Rcos(8;)sin(@;)
Z; = Rsin(0,)

If we can work these equations backward, then we’re done.

First let’s do ¢g:

Ve _ Rcos(6,)sin(¢,,) _ sin(,,)
X Rcos(8,)cos(p,) cos(@,)

= tan(¢y)
therefore

Ve

¢p = arctan(.) <---THE ANSWER, part 1

E

To get O we have:
7, = Rsin(6,)

sin(8,) = %E

0, = arcsin(Z—Ej
R

(If we happen to make R=1, then fz=arcsin(zg), but I haven’t decided this yet.)

0. = arcsin(Z—Ej
R

gives low accuracy answers near 90 degrees (why is that?) but there is a better way that is always accurate. To
understand it, think of the distance from the z axis that the (x,y,z) point is. Call this distance “rxy”” because it is
the “projection of R on to the xy plane.” Here is a digram with rxy in bold (from Wikipedia, with
modifications'):

In a computer the formula

Z
x(0.0.R)

R

g4t

e :

, | y
® !
y I‘W i

2 2 2

r.\'y_‘xE+yE
_ [.2 2

rxy_ 'xE+yE

Now we have the better way to get 0 :

tan(9,) = £ = -
Ty NV
SO
0, = z
p = arctan) ————— <---THE ANSWER, part 2
.XE + yE

(This accuracy problem is very common in computer simulations, game design and target tracking so most
computer languages, including python, have a special arctan function, called “ATAN2” for just this purpose.)

Conclusion:

We now have the math needed to convert the telescope’s Alt-Az pointing information (which comes from the
stepping motor control) to the sky’s natural Equatorial coordinates.

Footnotes:

1) I have changed the xyz system from “right handed’ to “left-handed” to agree with this explanation. It came
from https://en.wikipedia.org/wiki/Spherical coordinate system

Reverse Conversion: Equatorial to Alt-Az: (Steps flagged in red became Python code)

) @ d) / ,,}d %>g

9 1) Lookiy Tpomm T West, T Hha Fast
/'X %) —> (@ V/)

%
7<

P It skttt vy

|

Z

i L
£ | A + :Z: -
r K/ £ E =

o

Z\3> ?O = <€ ’6{4 + L SO/{)Q -Por £

z’%) <r) & >,» (Y/“z).,q

RS (c) .

A A &

% :F"?)V\-L) (yﬁ:ﬂf:)(é“‘"
3) (Xg%)% (&ﬁﬁ)ﬁ | .

75/\,%&%&\(,?#1) e

Ly

Q = &L‘%Mﬁ\(%_A)
" 2 2z
{mﬂ + ’QA

Python Code:

from collections import namedtuple #This is a add-on feature to allow multi-part
#variables such as (x,y,z) and (theta,phi)

from math import * #Import all of the math library, ie sin, cos, tan...
L=radians(34.0636051) #This is the latitude of Stern MASS from Google Maps that I
added to Stellarium

#L=radians(34.0095291) #This is the latitude of Alhambra used in Stellarium

def A to E(thetaA,phiA): #thetaA is the Altitude angle, phiA is the Azimuth angle, in
degrees.

thetaA is zero at the horizon, increasing to 90 degrees at the zenith (straight
overhead)

phiA is zero due north increases to 90 degrees due East, 180 for South, 270 for West.

print

print "thetaA=",thetaA," phiA=",phiA

R=1000.0

#Convert the angles to radians

thetaA=radians(thetad)

phiA=radians (phiA)

Hm STEP 1 theta, phi, R --> x,y,2

xA=R*cos (thetad)*cos(phiA)

yA=R*cos (thetalA)*sin(phiA)

zA=R*sin(thetad)

print "xA=",xA," yA=

e STEP 2 (x,¥,2)A --> (x,yY,2)E
Hmm e substep 2.1 yA --> yE

YE=yA

Hmm e substep 2.2 (x,z)A --> (eA,r)

eA=atan2(zA,xA)
r=sqrt (xXA*xA+zA*zA)
print "r=",r
Hmm e substep 2.3 eA --> eE
eE=radians(90.0)+eA-L
print "eA=",degrees(ed)," eE=",degrees(eE)
Hmm e substep 2.4 eE --> (x,2)E
xE=r*cos (eE)
zE=r*sin(eE)
print "xE=",6xE," yE=",yE," zE=",zE
Fmm e STEP 3 (x,¥,2)E --> (theta, phi,R)E
phiE=atan2 (yE, xE)
thetaE=atan2(zE,sqrt (XE*xXE+yE*yE))
e - We are done
#convert the angles from radians back to degrees
thetaE=degrees(thetaE)
phiE=degrees (phiE)
if phiE < 0.0:
phiE += 360.0 #We don't want negative phi values.
reverse phiE=360.0-phiE
#if reverse phiE > 360.0:
reverse phiE -= 360.0
print "thetaE=",6thetaE," phiE=",phiE," 360-phiE=",reverse phiE
angles = namedtuple('angles', 'theta phi')
return angles(theta=thetaE,phi=phiE)

def E to A(thetaE,phiE):

thetaE is the Declination angle. It is zero at the celestial equator, increasing to
90 at the celestial North Pole.

phiE is the angle around the equatorial plane

phiE is zero at the point below the horizon under the north celestial pole. It
increase

to 90 degree at due East, to 180 overhead/south and 270, due west.

print
print "thetaE=",thetaE," phiA=",phiE
R=1000.0

#Convert the angles to radians

thetaE=radians(thetakE)

phiE=radians (phiE)

Hm STEP 1 theta, phi, R --> x,y,2
xE=R*cos (thetaE)*cos (phiE)

yE=R*cos(thetaE) *sin(phiE)

zE=R*sin(thetaE)

print "xE=",6xE," yE=",yE," zA=",zE

e STEP 2 (x,9,2)E -=> (x,y,2)A
Hmm e substep 2.1 yE --> yA

YA=yYE

Hmm e substep 2.2 (x,2z)E --> (eE,r)

eE=atan2(zE,xE)
r=sqrt (XE*xXE+zE*zE)
print "r=",r
Hmm e substep 2.3 eE --> eA
eA=eE+L-radians(90.0)
print "eE=",degrees(eE)," eA=",degrees(ed)
Hmm e substep 2.4 r,eA --> (x,z)A
XA=r*cos (eA)
zA=r*sin(eA)
print "xA=",6xA, ,YA," zA=",zA
Fmm e STEP 3 (x,¥,2)A --> (theta, phi,R)A
phiA=atan2 (yA,xA)
thetaA=atan2 (zA,sqrt (xA*xA+yA*yA))
e - We are done
#convert the angles from radians back to degrees
thetaA=degrees(thetad)
phiA=degrees (phil)
if phiA < 0.:
phiA += 360.0 #We don't want negative phi values.
#reverse phiA=360.0-phiA
#if reverse_phiA > 360.0:
reverse phiA -= 360.0
print "thetaA=",thetaA," phiA=",phiA
#," 360-phiE=",reverse phiE
angles = namedtuple('angles', 'theta phi')
return angles(theta=thetaA,phi=phiA)

Test the conversion function
#newthetaE,newphiE=A to E(10.,20.)
#print "newthetaE=",6newthetaE," newphiE=",newphiE

Test the reverse conversion

#newthetaA,newphiA=E to A(newthetaE,newphiE)
#print "newthetaA=",6newthetaA," newphiA=",newphiA

10

