Converting Telescope Coordinate Systems.
Halverson 12/6/2018

How to convert from the Alt-Az (Altitude-Azimuth) coordinates our telescope uses to Equatorial coordinates
needed to locate and track objects in the sky.

General Strategy
I am calling the scope’s Alt-Az system the “A” system. and the Equatorial coordinates the “E” system.
General strategy to convert from A to E: (scope coordinates to sky coordinates)

1. Convert the pointing angles of the scope to x,y,z coordinates of a point a distance away, in the direction the
scope is pointing. The distance R doesn’t actually matter. It could be 10 meters away, or 1000 light years
away.

In short, (6,0,R)4 — (x,),2)4

2. Convert the (x,y,z)4 coordinates to (x,),z)r coordinates, in the rotated coordinate system where the z axis
points to the north celestial pole. (The z axis points to Polaris, the “North Star”.)

In short, (x,y,2)4 — (x,y,z)E
3. Convert the equatorial x,y,z coordinates to equatorial angles.
In short, (x,y,z)E — (6,0,R)E

Again, R is just a placeholder kept to make the math easier to understand. In the computer code we will
probably set R to 1, or eliminate it completely.

We will also need to convert E coordinates to A. With a few minor differences, the same process will apply.

HELP!!!
I NEED A STUDENT TO WORK THE MATH FOR E TO A COORDINATES CONVERSION.

Update 1/22/2019: 1 have done the math for E to A conversion and written the Python code for the
conversions math to be built in to the telescope control software. I have added the math and the Python
code to this document. I also corrected a couple mistakes. Scroll down and take a look.



Coordinate systems
“A” = ALT-AZ COORDINATE SYSTEM:
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Converting from A to E - details
Step 1: (0’¢’R)A - (x,y,z)A

x, = Rcos(8,)cos(¢,)
Y4 = Rcos(0,)sin(g,)
z, = Rsin(8,)

Step 2: (x,),5)4 — (X, ),2)E

This part is complicated and I will break it into smaller sub-steps.

Sub-step 2.1: y4 — vE

This is easy! The y coordinates are the same in the two systems.

Ve = Ya

Sub-step 2.2: (x,z)4 — (ear)

We now look at the coordinate systems a bit differently. We pretend we are West of the telescope and look at it
sitting in the East:
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This 1s a good way to look at it because from this vantage point the transition from “A” (Alt-Az) to

“E” (Equatorial) coordinates looks like a simple rotation.

In the diagram, we have defined a new angle called e4 related to the altitude 64 but different depending
on the current azimuth angle ¢4 of the telescope. To calculate e, first notice that

z,=rsin(e,) and x, =rcos(e,).

Now put these two thing together like this:
2z, _ rsin(e,)

=——"==tan(e,)
x, rcos(e,)

z
e, = arctan| —+
‘xA

We also define a new radial distance r related to the original R, but foreshortened because of our point-of-view
standing West of the telescope, looking East. We find it using the pythagorean theorem:

r=4\xi+2z;

We now have an easy way to find e4:



(Another way to find r is r = Rcos(¢, ) however if ¢4. is greater than 90 degrees, the cosine will be negative,

so we actually would need to use the absolute value r = R|cos(q) N )‘ )

Sub-step 2.3: es — e

The E system is rotated relative to the A system by an amount that depends on our latitude L. Here, in Los
Angeles, L=34.05 degrees which means we are that many degrees North of the equator, and that Polaris, the
North Star, is that many degrees above the horizon, to the North.

The E system’s x and z axes are rotated L degrees counter-clockwise from the A system’s x and z axis. In the
diagram below, you see how it is similar to the previous digram, but rotated ccw. (The y axis is pointed away
from us, so we don’t se it.)
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(I corrected a mistake in this diagram and in the following step. The angles didn’t add up right.)
For the conversion e4 — eg first note that the angle from the x axis to the z axis is 90 degrees so
90°=e,—e,+L
Solve for eg:
e, =90"+e,— L

No conversion is needed for 7, since the distance from the origin is unaffected by a rotation.

Sub-step 2.4: (r.ex)— (x,2)E

We now want to get x and z in the E system. (We already know y; it didn’t change.) It isn’t too hard:
X, =rcos(e;)

zp =rsin(e;)

(I corrected a mistake here. I had the cos and sin reversed.)

We are now done with step 2. We know (Xx,y,Z)E.



Step 3: (x,,5)E — (6,9,R)E
Since R doesn’t change in a rotation, we already know this part of the answer. It is the same R we started with.
(And it doesn’t really matter what R is.)

We also know this:
X = Rcos(0,)cos(¢,)
Y = Rcos(8;)sin(@;)
Z; = Rsin(0,)

If we can work these equations backward, then we’re done.

First let’s do ¢g:

Ve _ Rcos(6,)sin(¢,,) _ sin(,,)
X Rcos(8,)cos(p,) cos(@,)

= tan(¢y)
therefore

Ve

¢p = arctan( . ) <---THE ANSWER, part 1

E

To get O we have:
7, = Rsin(6,)

sin(8,) = %E

0, = arcsin(Z—Ej
R

(If we happen to make R=1, then fz=arcsin(zg), but I haven’t decided this yet.)

0. = arcsin(Z—Ej
R

gives low accuracy answers near 90 degrees (why is that?) but there is a better way that is always accurate. To
understand it, think of the distance from the z axis that the (x,y,z) point is. Call this distance “rxy”” because it is
the “projection of R on to the xy plane.” Here is a digram with rxy in bold (from Wikipedia, with
modifications'):

In a computer the formula
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Now we have the better way to get 0 :

tan(9,) = £ = -
Ty NV
SO
0, = z
p = arctan) ————— <---THE ANSWER, part 2
.XE + yE

(This accuracy problem is very common in computer simulations, game design and target tracking so most
computer languages, including python, have a special arctan function, called “ATAN2” for just this purpose.)

Conclusion:

We now have the math needed to convert the telescope’s Alt-Az pointing information (which comes from the
stepping motor control) to the sky’s natural Equatorial coordinates.

Footnotes:

1) I have changed the xyz system from “right handed’ to “left-handed” to agree with this explanation. It came
from https://en.wikipedia.org/wiki/Spherical coordinate system



Reverse Conversion: Equatorial to Alt-Az: (Steps flagged in red became Python code)
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Python Code:

from collections import namedtuple #This is a add-on feature to allow multi-part
#variables such as (x,y,z) and (theta,phi)

from math import * #Import all of the math library, ie sin, cos, tan...
L=radians(34.0636051) #This is the latitude of Stern MASS from Google Maps that I
added to Stellarium

#L=radians(34.0095291) #This is the latitude of Alhambra used in Stellarium

def A to E(thetaA,phiA): #thetaA is the Altitude angle, phiA is the Azimuth angle, in
degrees.

# thetaA is zero at the horizon, increasing to 90 degrees at the zenith (straight
overhead)

# phiA is zero due north increases to 90 degrees due East, 180 for South, 270 for West.

print

print "thetaA=",thetaA," phiA=",phiA

R=1000.0

#Convert the angles to radians

thetaA=radians(thetad)

phiA=radians (phiA)

Hm STEP 1 theta, phi, R --> x,y,2

xA=R*cos (thetad)*cos(phiA)

yA=R*cos (thetalA)*sin(phiA)

zA=R*sin(thetad)

print "xA=",xA," yA=

e STEP 2 (x,¥,2)A --> (x,yY,2)E
Hmm e substep 2.1 yA --> yE

YE=yA

Hmm e substep 2.2 (x,z)A --> (eA,r)

eA=atan2(zA,xA)
r=sqrt (xXA*xA+zA*zA)
print "r=",r
Hmm e substep 2.3 eA --> eE
eE=radians(90.0)+eA-L
print "eA=",degrees(ed)," eE=",degrees(eE)
Hmm e substep 2.4 eE --> (x,2)E
xE=r*cos (eE)
zE=r*sin(eE)
print "xE=",6xE," yE=",yE," zE=",zE
Fmm e STEP 3 (x,¥,2)E --> (theta, phi,R)E
phiE=atan2 (yE, xE)
thetaE=atan2(zE,sqrt (XE*xXE+yE*yE))
e - We are done
#convert the angles from radians back to degrees
thetaE=degrees(thetaE)
phiE=degrees (phiE)
if phiE < 0.0:
phiE += 360.0 #We don't want negative phi values.
reverse phiE=360.0-phiE
#if reverse phiE > 360.0:
# reverse phiE -= 360.0
print "thetaE=",6thetaE," phiE=",phiE," 360-phiE=",reverse phiE
angles = namedtuple('angles', 'theta phi')
return angles(theta=thetaE,phi=phiE)

def E to A(thetaE,phiE):



# thetaE is the Declination angle. It is zero at the celestial equator, increasing to
90 at the celestial North Pole.

# phiE is the angle around the equatorial plane

# phiE is zero at the point below the horizon under the north celestial pole. It
increase

# to 90 degree at due East, to 180 overhead/south and 270, due west.

print
print "thetaE=",thetaE," phiA=",phiE
R=1000.0

#Convert the angles to radians

thetaE=radians(thetakE)

phiE=radians (phiE)

Hm STEP 1 theta, phi, R --> x,y,2
xE=R*cos (thetaE)*cos (phiE)

yE=R*cos(thetaE) *sin(phiE)

zE=R*sin(thetaE)

print "xE=",6xE," yE=",yE," zA=",zE

e STEP 2 (x,9,2)E -=> (x,y,2)A
Hmm e substep 2.1 yE --> yA

YA=yYE

Hmm e substep 2.2 (x,2z)E --> (eE,r)

eE=atan2(zE,xE)
r=sqrt (XE*xXE+zE*zE)
print "r=",r
Hmm e substep 2.3 eE --> eA
eA=eE+L-radians(90.0)
print "eE=",degrees(eE)," eA=",degrees(ed)
Hmm e substep 2.4 r,eA --> (x,z)A
XA=r*cos (eA)
zA=r*sin(eA)
print "xA=",6xA, ,YA," zA=",zA
Fmm e STEP 3 (x,¥,2)A --> (theta, phi,R)A
phiA=atan2 (yA,xA)
thetaA=atan2 (zA,sqrt (xA*xA+yA*yA))
e - We are done
#convert the angles from radians back to degrees
thetaA=degrees(thetad)
phiA=degrees (phil)
if phiA < 0.:
phiA += 360.0 #We don't want negative phi values.
#reverse phiA=360.0-phiA
#if reverse_phiA > 360.0:
# reverse phiA -= 360.0
print "thetaA=",thetaA," phiA=",phiA
#," 360-phiE=",reverse phiE
angles = namedtuple('angles', 'theta phi')
return angles(theta=thetaA,phi=phiA)

# Test the conversion function
#newthetaE,newphiE=A to E(10.,20.)
#print "newthetaE=",6newthetaE," newphiE=",newphiE

# Test the reverse conversion

#newthetaA,newphiA=E to A(newthetaE,newphiE)
#print "newthetaA=",6newthetaA," newphiA=",newphiA

10



